产品概述
 

       可视化是利用计算机图形学和图像处理技术,将数据转换成图形或图像在屏幕上显示出来,并进行交互处理的理论、方法和技术。如果从字面上来理解,可视化就是把信息映射为可见图形的过程。它为人类与计算机这两个信息处理系统之间提供了一个接口。


——可视化在数据分析挖掘中的重要性

人对图像信息的解释效率比文字更高,我们人类是对图形图像极为敏感的生物。


       可视化对数据分析至关重要。它是进行数据分析的第一个战场,可以揭示出数据内在的错综复杂的关系,在这一点上可视化的优势是其它方法无可比拟。“我们寻找意想不到的发现,我们挑战料想之中的观点。”

(Visualizing Data一书作者,Hobart 出版社)


— 威廉·克利夫兰(William S. Cleveland)

       数据本身是不可见的,它们以比特和字节的形式存储在计算机硬盘驱动器的某个文件里。为了能让数据的意义得以体现,我们需要将其进行可视化。在这里,将采用广义的可视化概念,包括用纯文本展示的数据。例如,把一个数据集加载到某个电子表格软件里,这一过程就可以被认为是数据的可视化。看不见的数据瞬间就变成了屏幕上看得见的“图像”。因此,我们要探讨的问题不是新闻记者需不需要对数据进行可视化处理,而是在何种情况下用何种可视化方法,能够让数据分析达到最佳的效果。


       仅仅使用表格肯定不足以让我们得到对数据集的整体把握。而且,光用表格也不能帮我们直接识别出数据的内在模式。一个最常见的例子就是,与地理位置相关的这一类型的数据,只有当数据在地图上被可视化之后,其具有的特点才能显现出来。

       对于处理相对简单的维度的数据,表格的功能是非常强大的。表格可以以最为结构化和组织化的方式显示数据标签和数量,而且结合排序和筛选可以让其功能得到最大程度的发挥。建议在表格中添加一些小的数据图,例如在每一行加一个柱状图,或者画一个小的线形图。但是,表格无疑有其局限性。表格可以轻松帮你找到一维数据的异常值,比如排名前10的数据;但当要同时比较多维数据时,用表格就力不从心了。

       一般来说,数据图可以让你把数据的不同维度通过几何形状表现出来。有的时候,你最后可能会发现,虽然做出来的图非常漂亮,但好像不能提供给你任何有趣的东西。不过,即使没什么价值,你都能够从可视化结果中发现一些东西。如果把可视化分析看作一段在数据集中的旅程,那么对数据分析过程的记录就是你的旅行日记。它会告诉你到过哪些地方,看见了怎样的景色,以及你如何作出的下一步决定。你甚至可以在看到数据之前,就开始你的记录。


       可视化对数据挖掘系统的影响不仅仅局限在数据可视化方面,挖掘模型可视化、挖掘过程可视化、可视化程度、质量和交互灵活性都影响到数据挖掘系统的使用和解释能力。 可视化为数据集提供了一个独特的视角,进行数据可视化的方法有很多种。

下面就来看看全球备受欢迎的的可视化工具都有哪些?
Google Chart API

        Google Chart提供了一种非常完美的方式来可视化数据,提供了大量现成的图标类型,从简单的线图表到复杂的分层树地图等。它还内置了动画和用户交互控制。

D3

       D3(Data Driven Documents)是支持SVG渲染的另一种JavaScript库。但是D3能够提供大量线性图和条形图之外的复杂图表样式,例如Voronoi图、树形图、圆形集群和单词云等。

R语言

       是主要用于统计分析、绘图的语言和操作环境。虽然R主要用于统计分析或者开发统计相关的软件,但也有用作矩阵计算。其分析速度可比美GNUOctave甚至商业软件MATLAB(也是本人最喜欢的一种之一)。

Processing

        Processing是数据可视化的招牌工具。你只需要编写一些简单的代码,然后编译成Java。Processing可以在几乎所有平台上运行。

Leaflet

       Leaflet是一个开源的JavaScript库,用来开发移动友好地交互地图。

Openlayers

       Openlayers可能是所有地图库中可靠性最高的一个。虽然文档注释并不完善。且学习曲线非常陡峭,但是对于特定的任务来说,Openlayers能够提供一些其他地图库都没有的特殊工具。

CartoDB

        CartoDB是一个不可错过的网站,你可以用CartoDB很轻易就把表格数据和地图关联起来,这方面CartoDB是最优秀的选择。

iCharts

       iCharts提供可一个用于创建并呈现引人注目图表的托管解决方案。有许多不同种类的图表可供选择,每种类型都完全可定制,以适合网站的主题。iCharts有交互元素,可以从Google Doc、Excel表单和其他来源中获取数据。

Cube

       Cube是一个开源的系统,用来可视化时间系列数据。它是基于MongoDB、NodeJS和D3.js开发。用户可以使用它为内部仪表板构建实时可视化的仪表板指标。

Gantti

       Gantti是一个开源的PHP类,帮助用户即时生成Gantti图表。使用Gantti创建图表无需使用JavaScript,纯HTML-CSS3实现。图表默认输出非常漂亮,但用户可以自定义样式进行输出(SASS样式表)。

Flot

       Flot是一个优秀的线框图表库,支持所有支持canvas的浏览器(目前主流的浏览器如火狐、IE、Chrome等都支持)。

Anychart

       Anychart是一个灵活的基于Flash/JavaScript(HTML5)的图表解决方案、跨浏览器、跨平台。除了图表功能外,它还有一款收费的交互式图表和仪表。

Quantum GIS(QDIS)

       Quantum GIS(QDIS)是一个用户界面友好、开源代码的GIS客户端程序,支持数据的可视化、管理、编辑与分析和印刷地图的制作。

OpenHeatMap

       OpenHeatMap简单易用,用户可以用它上传数据、创建地图、交流信息。它可以把数据(如Google Spreadsheet的表单)转化为交互式的地图应用,并在网上分享。

Circos

       Circos最初主要用于基因组序列相关数据的可视化,目前已应用于多个领域,例如:影视作品中的人物关系分析,物流公司的订单来源和流向分析等,大多数关系型数据都可以尝试用Circos来可视化。           

        传统的数据可视化工具仅仅将数据加以组合,通过不同的展现方式提供给用户,用于发现数据之间的关联信息。近年来,随着云和大数据时代的来临,数据可 视化产品已经不再满足于使用传统的数据可视化工具来对数据仓库中的数据抽取、归纳并简单的展现。新型的数据可视化产品必须满足互联网爆发的大数据需求,必须快速的清洗、转换、挖掘、分析、展现决策者所需要的信息,并根据新增的数据进行实时更新。因此,在大数据时代,数据可视化工具必须具有以下特性:

(1)实时性

       数据可视化工具必须适应大数据时代数据量的爆炸式增长需求,必须快速的收集分析数据、并对数据信息进行实时更新。

(2)简单操作

       数据可视化工具满足快速开发、易于操作的特性,能满足互联网时代信息多变的特点。

(3)更丰富的展现

       数据可视化工具需具有更丰富的展现方式,能充分满足数据展现的多维度要求。

(4)多种数据集成支持方式

       数据的来源不仅仅局限于数据库,数据可视化工具将支持团队协作数据、数据仓库、文本等多种方式,并能够通过互联网进行展现。


产品功能
 
应用场景
 
帮助与文档